Environmental Protection Agency

7.3 Relative Accuracy for SO₂ and CO₂ Pollut-ant Concentration Monitors, SO₂-Diluent Continuous Emission Monitoring Systems, and Flow Monitors

Analyze the relative accuracy test audit data from the reference method tests for SO₂ and CO₂ pollutant concentration monitors, SO₂-diluent continuous emission monitoring systems (lb/mmBtu) used by units with a qualifying Phase I technology for the period during which the units are required to monitor SO₂ emission removal efficiency, from January 1, 1997 through December 31, 1999, and flow monitors using the following procedures. Summarize the results on a data sheet. An example is shown in Figure 2. Calculate the mean of the monitor or monitoring system measurement values. Calculate the mean of the reference method values. Using data from the automated data acquisition and handling system, calculate the arithmetic differences between the reference method and monitor measurement data sets. Then calculate the arithmetic mean of the difference, the standard deviation, the confidence coefficient, and the monitor or monitoring system relative accuracy using the following procedures and equations.

7.3.1 Arithmetic Mean

Calculate the arithmetic mean of the differences, d, of a data set as follows.

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

(Eq. A-7) where.

n=Number of data points.

n

Σ d_i =Algebraic sum of the

i=1individual differences d_i.

d_i=The difference between a reference method value and the corresponding continuous emission monitoring system value (RMi-CEMi) at a given point in time i.

When calculating the arithmetic mean of the difference of a flow monitor data set, be sure to correct the monitor measurements for moisture if applicable.

7.3.2 Standard Deviation

Calculate the standard deviation, S_{d} , of a data set as follows:

$$S_{d} = \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2} - \left[\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}\right]^{2}}{n-1}}$$

(Eq. A-8)

7.3.3 Confidence Coefficient

Calculate the confidence coefficient (onetailed), cc, of a data set as follows.

$$cc = t_{0.025} \frac{S_d}{\sqrt{n}}$$

(eq. A-9) where.

 $t_{0.025}$ =t value (see Table 7-1).

TABLE 7-1 T-VALUES

n-1	t _{0.025}	n-1	t _{0.025}	n-1	t _{0.025}
1	12.706	12	2.179	23	2.069
2	4.303	13	2.160	24	2.064
3	3.182	14	2.145	25	2.060
4	2.776	15	2.131	26	2.056
5	2.571	16	2.120	27	2.052
6	2.447	17	2.110	28	2.048
7	2.365	18	2.101	29	2.045
8	2.306	19	2.093	30	2.042
9	2.262	20	2.086	40	2.021
10	2.228	21	2.080	60	2.000
11	2.201	22	2.074	>60	1.960

7.3.4 Relative Accuracy

Calculate the relative accuracy of a data set using the following equation.

$$RA = \frac{|\vec{a}| + |cc|}{RM} \times 100$$

(Eq. A-10)

where,

RM=Arithmetic mean of the reference method values.

|d|=The absolute value of the mean difference between the reference method values and the corresponding continuous emission monitoring system values.

|cc|=The absolute value of the confidence coefficient